Mobile Vehicle Cybersecurity with Onboard Key Management

Iowa State University: ECpE sdmay23-15

Aayush Chanda, Alexander Freiberg, Baganesra Bhaskaran, Brian Goode, Chau Wei Lim, Michael Roling

Introduction

- Vehicle controllers communicate via Controller Area Network (CAN) Bus
 - \circ ~ Open and non-secure network
 - Follow SAE J1939 communication protocols
- Interest of all parties for authentic data
 - OEMs, owners, and 3rd party producers
- Safety concerns
 - Physical devices/sniffer tools
 - Virtual software development

Implementation Architecture

- CAN Simulator (C)
 - o Ubuntu
 - CAN Tx/Rx
 - CAN Sniffer
- J1939 Protocols
 - CAN FD; 2-5 MBits/Sec.
 - CAN; 1 MBit/Sec.
- TweetNaCl
 - Encryption/Decryption
 - \circ 40 bytes of overhead
 - 24 byte nonce
 - 16 byte message authentication code (MAC)
- Hardware: outside the scope of the project

							IC	Sim	ulator		-	×	
				40	80		120	mG	0 160 PH 220 220 arages 240 260				
		sdmay	23-1	5@so	dma	y23'	15-V	'irtu	alBox: ~/Desktop/ICSim	Q			
00009	158	00 00	00	00	00	00	00						
00010	161	00 00	05	50	01	08	00		P+				
00011	164	00 00) C0	1 A		00	00						
00007	166	D0 32	00						.2.6.				
00009	17C	00 00	00	00	10	00	00						
00008	183	00 00	00		00	00	10						
00098	309	00 00	00	00	00	00	00						
00009	18E	00 00	TA			~~							
00010	191	01 00	90	AI	41	00	12		A8				
00020	1A4			08	00	00	00						
00020			00	00	00	00							
00019	1 105			00	00	301							
00019				30	00				op /				
00019	21F	02 00	37	45	22	06			7E"				
00015	244	00 00	0.00	24	DB	00							
00039	294	04 05	00	02	CF	5A	00						
00103	305	80 17											
00099	309	00 00	00	00	00	00	00						
00100	320	00 00	12										
00100	324	74 65	00	00	00	00	0E		te				
00100	324	74 65	00	00 00	00 00	00 00	0E 1E		te				

Milestones

• CAN Tx/Rx

- CAN Socket; Python and C
- Software development to ensure sequential messages
- CAN FD and J1939
 - Extending CAN Frames
 - Posed issues with encryption

• TweetNaCl

- Implementing nonce and MAC
- Ensuring timely asynchronous communication

Contributions

- *Aayush (Advisor Liaison):* developed functionality for CAN FD frames, integrated TweetNaCl encryption, and served to effectively communicate between the advisor and team.
- *Alexander (Client Liaison):* initialized the Virtual CAN environment where all software was implemented, developed TweetNaCl encryption, and ensured proper communication with the client.
- *Baganesra (GitLab Administrator):* developed transmission/reception functionality among the virtual ECUs, aided in the design of encryption protocols, and managed growth within GitLab.
- *Brian (Team Organizer):* aided in the design of a manifest list for key exchanges, implementation of a nonce, and helped organize the team for weekly development.
- *Chau (Strategist):* developed software to facilitate communication for each ECU, managed setting up the CAN network at each node, and led the development for each week's schedule.
- *Michael (Documentor):* oversaw the implementation of pertinent J1939 protocols, code review for integration of TweetNaCl, and created documentation for project's development.

Setbacks and Solutions

- Learning curve of CAN
 - J1939 Protocols
- Virtual simulation environment
 - o Ubuntu
- Incorrect Initial Design Implementation
 - Lightweight Authentication using CRC bit field in CAN Frame
- CAN Socket in C
 - CAN Tx/Rx
 - Multiple nodes on the CAN Bus
- CAN FD
- TweetNaCl encryption
 - Box Function; nonce and MAC

```
File vehiclePubKey.txt : Found
Key from File vehiclePubKey.txt: Read
File vehiclePrivKey.txt : Found
Key from File vehiclePrivKey.txt: Read
Public/Private Key Pair Loaded
Socket Initialized
Socket Initialized
Socket bound to CAN FD
Socket bound to Interface
Initializing CAN FD Frame
```

***** Reading Mode 1 *****

Timeout occured: Nothing to receive

```
***** Checking if there is data to send *****
Nonce Loaded: B988D80129C05DCE4BAB84A106B6A8FF59848998B86CF430
Message to be Encrypted (In Hex): 726F6C6C636C6F6E65733132
Encrypting Message...
Encrypted Message Length: 28
Encrypted Message: 6F83B40C7F5D9D9DFA8489745E7472C4C47C67BA148A947EB4121E56
Total Payload Length (Padded): 52
Sending Frame...
CAN FD Frame SENT (ID = 0x123, Length = 52 Bytes)
Payload: B988D80129C05DCE4BAB84A106B6A8FF59848998B86CF4306F83B40C7F5D9D9DFA8489745E74
72C4C47C67BA148A947EB4121E56
```

***** Reading Mode 2 *****

```
Data available
Scanning for Frames...
Frame Received!
Frame Data: B988D80129C05DCE4BAB84A106B6A8FF59848998B86CF4306F83B40C7F5D9D9DFA8489745
E7472C4C47C67BA148A947EB4121E56
Nonce Extracted: B988D80129C05DCE4BAB84A106B6A8FF59848998B86CF430
Ciphertext Extracted: 6F83B40C7F5D9D9DFA8489745E7472C4C47C67BA148A947EB4121E56
Decrypting Message...
Message: Decrypted!
Plaintext Message: rollclones12
                                                      Length of Plaintext Message
                       Length of Frame Data
Frame ID
     Message (Hex)
0x123
     72 6F 6C 6C 63 6C 6F 6E 65 73 31 32
***** Reading Mode 3 *****
```

Continued Development

- Hardware development; outside scope of the project
 - Flashing valid ECUs on CAN Bus
 - \circ ~ Testing invalid devices on CAN Bus
- Software development
 - Manifest containing Protocol Group Numbers (PGNs) to map to CAN IDs
 - Increase Maximum Transmission Unit (MTU) to fit larger messages
 - Implement Software/Scripts to manage each ECU
 - Integration of messages as found in J1939 protocol.

Conclusion

- Effectively met client's requirements
 - Technical ability to handle CAN-FD segments
 - Sequential Tx/Rx CAN messages (<5 mS)
 - Implementation of key management protocols (J1939)
 - Generated key to handle encryption/decryption of messages
 - TweetNaCl
- Strong safety applications to the vehicle industry
 - \circ $\,$ OEM manufacturers, vehicle owners, and 3rd party producers
- Applications after graduation
 - Network security at the enterprise level
 - Design of electric drives on CAN Bus
 - Engineering controllers with CAN Bus functionality

Works Cited

- CAN Bus Diagram
- CAN_FD_image
- sdmay23-15 Mobile Vehicle Cybersecurity with On-board Key Management (iastate.edu)

Appendix

Client: John Roberts

Advisor: Dr. Joseph Zambreno